top of page

Boogie with the Brain

By Caitlin Colapietro, Gabriella Tan, Shin Chien Chua, Sophie Brodtkorb, Valeria Perboni, Zoe Sole



The Neuroaesthetics of Dance


Why is dance infectious? Dance is a form of art with the ability to arouse aesthetic experience — a “gratification of senses” by any sensory stimulus (Goldman, 2001). Literature suggests that there is an underlying reason as to why we feel like dancing when we observe dance. However, there is limited research investigating the neural correlates of the aesthetic experience in dance. As one of the first people to conduct research on the neuroaesthetics of dance, Beatriz Calvo-Merino discussed in her talk how the brain processes aesthetic judgement, evaluation and interpretation of artistic movement. She suggested that in order to study movement itself, the stimuli has to be dynamic and standardised. Thus, the kinematics of dance movement should be studied rather than static movements, while keeping other visual features such as background and costumes constant, as they could be confounding factors. Hence, dancers of similar body type, no music, and same neutral background should be considered for the study of dance.


The aim of the first study conducted on the neural correlates of dance aesthetics, set out to identify relationships between movement and related brain areas (Calvo-Merino et al., 2008). Using a mixed methods approach of questionnaires and fMRI, the study recorded non-dance experts’ brain activity while they watched video clips of classical ballet and capoeira. Results showed that only the like-dislike dimension had significant neural correlates on aesthetic experience, compared to the other four dimensions (simple-complex, dull-interesting, tense-relax, weak-powerful). This was found especially in the right premotor cortex, and bilateral early visual cortexes. Results also revealed that these brain regions prefer whole body movements that are displaced in space; such as jumping. Whereas body movements that were confined to a single limb, with no displacement in space, were least activated in the brain regions. Based on these brain activations, this research indicates people prefer full body movement over single limb movements. Activation in both parts of the brain suggests that the premotor cortex ‘mirrors’ actions. Mirror neurons refer to the principle that the same areas of the brain are activated when an action is observed and performed — as if the observer is performing the action in their mind.


Figure 1. Examples of dance movements that achieved the highest and lowest scores on the aesthetic questionnaire



The Role of Familiarity and Expertise 


From the above mentioned study, we now know what happens in the brain when we view dances we enjoy. Calvo-Merino is also interested in how this may relate to viewers’ dance expertise. Using the same methodology as Calvo-Merino et al. (2008) amongst non-dancers, ballet dancers, and Capoeira experts, Calvo-Merino et al. (2004) found those who liked the dance sequence had higher strength in motor resonance in the dorsolateral premotor cortex. In summary, experts in the same motor activity i.e. dancers watching dancing, will have a different neurological response compared to novice counterparts. This suggests participants are able to use their mirror neuron system to internally participate in the motor movement they are familiar with whilst spectating. For example, for participants familiar with Capoeira, the same brain regions will be active whilst watching the movement sequence, as those executing them. However, this study was unable to distinguish which comes first, liking or strength of motor resonance.


Calvo-Merino’s use of fMRI is extremely useful as it allows for implicit data to be collected, in addition to traditional explicit data. Implicit preferences are unconscious, opposed to explicit data often obtained via surveys and questionnaires. Explicit data can come with complications for researchers such as bias and social desirability. Because implicit data is unconscious, it bypasses these issues and can be used in conjunction with explicit data to further the understanding of a variety of human behavior. 



Figure 2. Classical Ballet and Capoeira movements performed by experts



How Can We Examine the Perception of Dance?  


Christensen et al. (2019) has created a library of normalized dance videos aimed to reduce confounding factors. By separating the ‘dancer’ from the ‘dance’, the library allows researchers to examine the individual motions — the kinematics. Dance sequences are converted into movements of dots replacing the dancer’s joints and head. This eliminates the confounding body stimulus, contributing to forming an aesthetic perception of the dance movement (Calvo-Merino et al., 2010). This separation decouples the movement from its emotional salience, since not the movement sequence itself, but rather the quality of the movement is responsible for transferring emotions (Christensen et al., 2016). Hence, this allows the study of movement without the interference of emotional value. 


However, any such experimental study of dance can arguably lack ecological validity in a number of ways, for example, trying to separate the body from the movement, or watching videos in and out of scanning devices. More importantly, experiments fail to account for the emotional responses of the complementary aspects of dance such as music, staging, theatre, costumes, context, atmosphere, storyline and number of dancers. 


Nevertheless, neuroaesthetic dance research has a number of practical applications including, but not limited to, changing dance teaching practices, implementing choreographic devices and the possibility of creating ‘choreography for the brain’. By knowing what aesthetic judgments and which movements evoke stronger aesthetic responses in an individual, one might expect that neuroaesthetics of dance can be used to create the ‘perfect' dance performance. However, many choreographers refuse this model of application, as it is in contrast with ideologies of creativity. It is important to consider that the idea of a ‘perfect dance' is in itself flawed. In fact, different levels of expertise influence the subjective emotional response and objectively measurable physiological arousal of dance. Although universal response tendencies for dance movements can be found, the ultimate evaluation differs individually (Christensen et al., 2016).


In conclusion, objective quantitative measures of emotional response to the aesthetic stimulus are still only one component in the overall experience of dance. From research, we can say the brain ‘likes’ dance movement that we explicitly like, and we prefer movement we are more familiar with. Although breaking dance down into its individual components allows us to gain a more in depth understanding of its neural correlates, from a Gestalt approach, ‘the whole is greater than the sum of its parts’. Arguably, if you reduce dance movement to its bare components it is no longer an authentic aesthetic experience. Overall, subjectivity related to previous experience is what makes our emotional response to the aesthetic experience of dance so varied. 



References


Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all: Configural effects in action observation. Psychological Research PRPF, 74(4), 400–406. 


Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2004). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral cortex, 15(8), 1243-1249.


Calvo-Merino, B., Jola, C., Glaser, D. E., & Haggard, P. (2008). Towards a sensorimotor aesthetics of performing art. Consciousness and cognition, 17(3), 911-922.


Christensen, J. F., Gomila, A., Gaigg, S. B., Sivarajah, N., & Calvo-Merino, B. (2016). Dance expertise modulates behavioral and psychophysiological responses to affective body movement. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1139–1147. 


Christensen, J. F., Lambrechts, A., & Tsakiris, M. (2019). The Warburg Dance Movement Library—The WADAMO Library: A Validation Study. Perception, 48(1), 26–57. 


Goldman, A. (2001). The Routledge companion to aesthetics. In B. Gaut & D. McIver Lopes (Eds.), The aesthetic (pp. 181–192).

249 views0 comments
bottom of page